Shouldering the Burden

Wheelchair Athletes and Shoulder Injuries

Dr. Julia Alleyne BHSc(PT) MD MScCH Dip Sport Med CMO, 2015 Parapan Games, Toronto

Faculty/Presenter Disclosure

Faculty: Dr. Julia Alleyne BHSc(PT) MD CCFP Dip Sport Med MScCH

Relationships with commercial interests:

Employee of Toronto2015 Organizing Committee

Disclosure of Commercial Support:

None

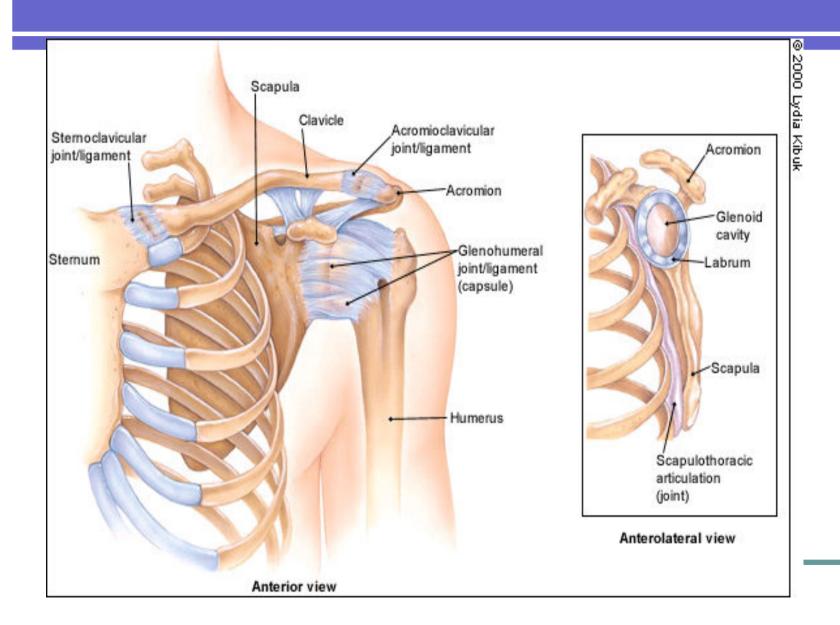
Potential for conflict(s) of interest:

None

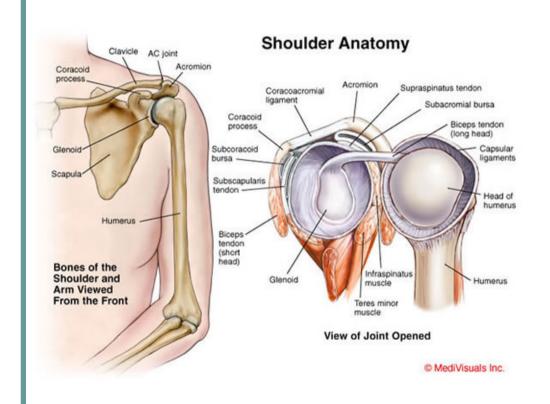
Objectives

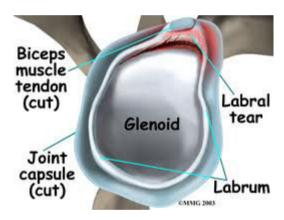
- To be able to describe the anatomy and physiology of the shoulder joint in motion
- 2. To be able to identify injury risk factors with common wheelchair sports
- To be able to apply concepts of evidenced based rehabilitation into training

Fusion of Science and Sport

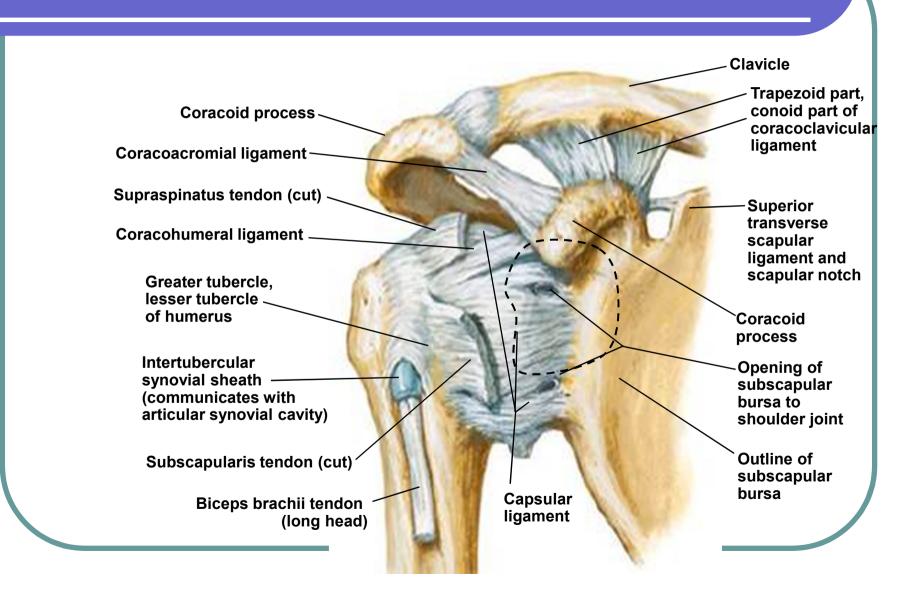

Functional Anatomy

Sport Mechanics


Athlete Risk Factors


Rehabilitation and Recovery

Non-Contractile

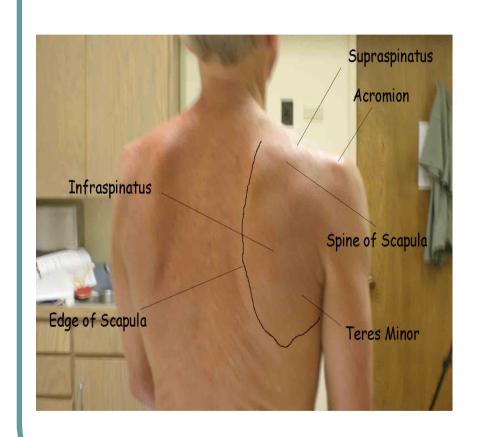


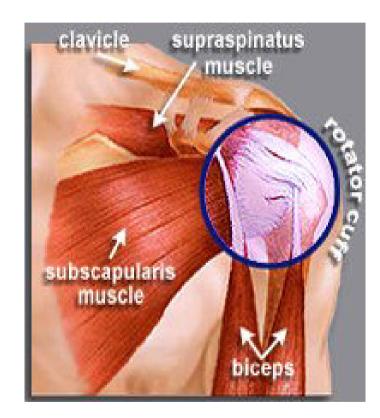
Labrum

Anterior View

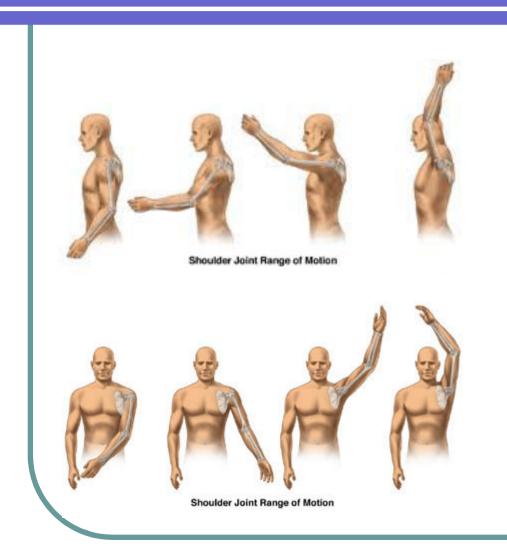
Stability with Mobility

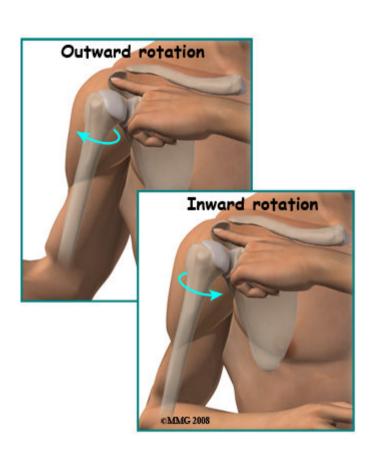
Dynamics of Movement


- Joint Shape and Position
- Producing Freedom of Range


Structures for Stability

- Strength
- Shock Absorption




Shoulder Anatomy- Contractile

Dynamic Movement

Functional Anatomy

Contractile

- Rotator Cuff
 - Supraspinatus
 - Infraspinatus
 - Subscapularis
 - Teres Minor
- Biceps/ Triceps
- Deltoid
- Subscapular stabilizers

Non- Contractile

- Labrum
- Ligaments
- Capsule
- Bursa
- Nerves
- Bones

Dominant Symptoms

Pain

Dominant Symptoms

Pain

Stiffness

Weakness

Dominant Symptoms

Pain

Stiffness

Instability

Weakness

Shoulder Pathology

Impingement

Instability

"Pinching sharpness"

"pops and shifts"

Inflammation

Immobility

" Hurts to move through range"

" Can't move it"

Shoulder Pathology

- Impingement
- > Tendon
- Bursa

"Pinching sharpness"

- Inflammation
- Acute Strain
- > Tendonopathy

" Hurts to move through range"

Instability

- Joint/ Labrum
- Muscles

"pops and shifts"

- Immobility
- > Frozen Shoulder
- Arthritis
- > Fracture

"Can't move it"

Fusion of Science and Sport

Functional Anatomy

Sport Mechanics

Athlete Risk Factors

Rehabilitation and Recovery

Sport Mechanics

Basketball Rugby Athletics Tennis

Archery Dance Fencing Curling Shotput

Sport Mechanics

Pull Push

Propulsion Propulsive

Repetitive Repetitive

Reach/ Shoot Grab/ Hold

Stability and Rotation Pivotal turns,

Key Mechanical Factors

- Propulsion
 - Repetition plus Force against Resistance
 - Athletics (Speed)
- Reach
 - Basketball (and Release)
 - Tennis (and Swing)
 - Rugby (and Throw)
- "Out of Reach"
 - Pivots, Manoeuvres, Awkward moments

How common are shoulder problems

Mobility – 40%, Push, F>M, Age

J.Rehabil Med., Shoulder pain in persons with thoracic spinal cord injury: prevalence and characteristics 2008 Apr;40(4):277-83

Prevalence and intensity of shoulder pain was significantly higher with patients with tetraplegia than paraplegia.

Arch Phys Med Rehabil., Shoulder pain in wheelchair users with tetraplegia and paraplegia 1999 Apr;80(4):453-7.

What is the incidence of Shoulder problems with Sport?

Women > Men 52% at Study 90% per Lifetime

J Orthop Sport Phys Ther. **Shoulder pain in female wheelchair basketball players** 1999 Apr;29(4):225-31

Fusion of Science and Sport

Functional Anatomy

Sport Mechanics

Athlete Risk Factors

Rehabilitation and Recovery

Wheelchair Tennis

- Hyper-extension of shoulder
- Overhead smash
- Multi-directional
- Using arms to accelerate, manouevre

and use racquet

High Risk Sport- WC Tennis

33 Elite WC Tennis Players, Random Health Questionnaire followed by Ultrasound

Dominant > Non-dominant Shoulder

- 21/33 (63%) Acromioclaveular pathology
- 14/33 (42%) Rotator Cuff Pathology

Negative Variables

- Age, Training time per day, Length of Career, Length of Time in Wheelchair

Postive Variable

- Wheelchair Tennis

Conclusion: What is predictable is preventable

Jeon et al: Ultrasonographic evaluation of the shoulder in elite wheelchair tennis players, J. Sport Rehab, 2010, 19, 2, 161-172,

Comparison of Able Bodied and Wheelchair **Fencers**

- Wheelchair fencers had higher overall injury incidence rate (3.9/1000 hours) than AFs (2.4/1000 hours).
- Wheelchair fencers with poor trunk control were more vulnerable to injuries (4.9/1000 hours) than those with good trunk control (3.0/1000 hours)

Chung et al; Clinical Journal of Sport Medicine; Musculoskeletal Injuries in Elite Able-Bodied and Wheelchair Foil Fencers—A Pilot Study Volume 22(3), May 2012, p 278–280

Risk Factors

Athlete Risk Factors

- 1. Pre-existing
 - Impairment
- 2. Precipitators
 - new injury/ new equipment
- 3. Perpetuating
 - Deconditioning
- 4. Protective
 - Fitness, Recovery, Access to Treatment

Which of the following are Risk Factors for Rotator Cuff Disease?

- Smoking
- Alcohol
- Gender
- Age
- Previous Trauma
- Increased Body Mass Index
- Deconditioning
- Psychological Stress

Which of the following are Risk Factors for Shoulder Injury?

- Smoking
- Alcohol
- Gender
- Age
- Previous Trauma
- Increased Body Mass Index
- Deconditioning
- Psychological Stress

Is Gender a Risk Factor?

Prevalence and impact of musculoskeletal disorders of the upper limb in the general population.

Walker-Bone et al, United Kingdom Arthritis Rheum 2004 Aug 15:51(4):642-651

Methods:

- -9,696 subjects, M&F, Cross-sectional Survey, Random
- -Screening Questionnaire then a Symptomatic Exam

Results:

1. Shoulder Tendonopathy M:F 4.5%: 6.1%

2. Adhesive Capsulitis M:F 8.2%: 10.1%

Concurrent Medical Problems

Conclusions:

A consistent association between <u>diabetes and</u> <u>shoulder</u> disorders, some associations for weight-related factors as well as a possible preventive effect from physical exercise and sports suggest a metabolic pathophysiological process in shoulder disorders.

Risk factors of atherosclerosis and shoulder pain - Is there an association? A systematic review

European Journal of Pain (May 2008), 12 (4), pg. 412-426

Risk Factors

Shoulder Anatomy

- Increased Glenohumeral Laxity
- Shallow or narrow Joint

Shoulder Physiology

- Smaller Muscle mass for conditioning
- Habitual Postures

Shoulder Function

Above Shoulder Positioning & Repetition

Fusion of Science and Sport

Functional Anatomy

Sport Mechanics

Athlete Risk Factors

Rehabilitation and Recovery

Rehabilitation and Recovery

- Assess Trunk Control Train CORE
- 2. Rotator Cuff Training Predictable
- 3. Balance Mobility and Stability
- 4. Equipment
- Lifestyle Risk Factors
- 6. General Health Contribution

Key CORE Exercises

Rotator Cuff Conditioning

Stop Guessing and Start Assessing

1. Mobility

- Sport requirements and Athlete Ability
 - GAP: Dynamic Stretching, Passive Positioning Rehab: Soft Tissue Manual Therapy

Stability

- Risk Factor analysis for instability
 - Gap: Strength Rotator Cuff/ Subscapular/ Core Rehab- Progressive, proprioceptive strengthenin Structure - Labral /Ligament/ Capsular Tear

Recovery

Mini recovery within sport activity

- positional, variable intensity, active rest

Optimal Recovery between activity

- Light training days, Off days
- Massage, Cool Tubs, Nutrition

Recovery within Per iodization

- Extended Time off – 2-3 weeks for recovery

